Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)- and NaCHK3-mediated perception modulate herbivory-induced defense signaling and defenses in Nicotiana attenuata.
نویسندگان
چکیده
Herbivore attack elicits changes in cytokinins (CKs), but how these changes influence defense signaling remains poorly described. We investigated the influence of the CK pathway on the well-described inducible defense pathways of Nicotiana attenuata in response to wounding with and without elicitors from the specialist herbivore Manduca sexta. CK pathway manipulation often suffers from substantial side effects on plant growth and development. We therefore used multiple manipulation tools including spray application of CKs, chemically-inducible expression of the CK biosynthesis enzyme isopentenyltransferase, and transient and constitutive RNAi-mediated gene silencing of CK receptors to resolve the function of CKs in plant defense. The results demonstrated that CK concentrations in leaves and perception through CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2) and NaCHK3 were important for the accumulation of jasmonic acid (JA) and phenolamides and proteinase inhibitor activity. By contrast, the CK pathway did not promote the accumulation of the active JA-isoleucine conjugate and negatively regulated the release of specific green leaf volatile esters. Interestingly, CK signaling also promotes the systemic phenolamide accumulation. We conclude that the CK pathway is an important regulator of herbivory-inducible defense signaling and chemistry, which expands its reported participation in adjusting a plant's physiology to abiotic and biotic stress responses.
منابع مشابه
Nicotiana attenuata LECTIN RECEPTOR KINASE1 Suppresses the Insect-Mediated Inhibition of Induced Defense Responses during Manduca sexta Herbivory C W
Nicotiana attenuata has the capacity to respond specifically to herbivory by its natural herbivore, Manduca sexta, through the perception of elicitors in larval oral secretions. We demonstrate that Lectin receptor kinase 1 (LecRK1) functions during M. sexta herbivory to suppress the insect-mediated inhibition of jasmonic acid (JA)–induced defense responses. Gene function analysis performed by r...
متن کاملNicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory.
Nicotiana attenuata has the capacity to respond specifically to herbivory by its natural herbivore, Manduca sexta, through the perception of elicitors in larval oral secretions. We demonstrate that Lectin receptor kinase 1 (LecRK1) functions during M. sexta herbivory to suppress the insect-mediated inhibition of jasmonic acid (JA)-induced defense responses. Gene function analysis performed by r...
متن کاملCytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in Nicotiana attenuata
Nearly half a century ago insect herbivores were found to induce the formation of green islands by manipulating cytokinin (CK) levels. However, the response of the CK pathway to attack by chewing insect herbivores remains unclear. Here, we characterize the CK pathway of Nicotiana attenuata (Torr. ex S. Wats.) and its response to wounding and perception of herbivore-associated molecular patterns...
متن کاملSilencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound- and herbivory-induced jasmonic acid accumulations.
The plant hormone jasmonic acid (JA) plays a pivotal role in plant-insect interactions. Herbivore attack usually elicits dramatic increases in JA concentrations, which in turn activate the accumulation of metabolites that function as defenses against herbivores. Although almost all enzymes involved in the biosynthesis pathway of JA have been identified and characterized, the mechanism by which ...
متن کاملSilencing Nicotiana attenuata Calcium-Dependent Protein Kinases, CDPK4 and CDPK5, Strongly Up-Regulates Wound- and Herbivory-Induced Jasmonic Acid Accumulations1[W]
The plant hormone jasmonic acid (JA) plays a pivotal role in plant-insect interactions. Herbivore attack usually elicits dramatic increases in JA concentrations, which in turn activate the accumulation of metabolites that function as defenses against herbivores. Although almost all enzymes involved in the biosynthesis pathway of JA have been identified and characterized, the mechanism by which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 207 3 شماره
صفحات -
تاریخ انتشار 2015